At the end of this page, you can find the full list of publications. All papers are also available on arXiv.
Fiber-coupled sensors are well suited for sensing and microscopy in hard-to-reach environments such as biological or cryogenic systems. We demonstrate fiber-based magnetic imaging based on nitrogen-vacancy (NV) sensor spins at the tip of a fiber-coupled diamond nanobeam.
Y. Li, G. Welker, R. Norte, T. van der Sar
Magnonics aims at using collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications, and advanced computation. We describe how magnetic imaging based on NV centers in diamond offers new opportunities for probing magnons and their interactions on the micro-to-nanoscale.
A. Finco, C.R. Du, T. van der Sar, …, D Grundler, B. Flebus.
J. Phys. Condens. Matter 36, 363501 (2024)
Using diamond-based magnetic imaging, we can look through optically opaque materials. Here we use this to reveal the interaction between spin waves and a superconductor.
M. Borst, P. H. Vree, A. Lowther, A. Teepe, S. Kurdi, I. Bertelli, B. G. Simon, Y. M. Blanter, T. van der Sar
We present a new diamond transfer technique akin to 2D-materials assembly methods and use it to measure the magnetization of the van der Waals magnet CrSBr.
T. S. Ghiasi, M. Borst, S. Kurdi, B. G. Simon, I. Bertelli, C, Boix-Constant, S. Mañas-Valero, H. S. J. van der Zant, T. van der Sar
npj 2D Materials and Applications 7, 62 (2023)
We demonstrate a scanning-NV sensor consisting of a diamond nanobeam that is optically coupled to a tapered optical fiber. This nanobeam sensor combines a natural scanning-probe geometry with high-efficiency through-fiber optical excitation and readout of the NV spins.
Y. Li, F.A. Gerrtisma, S. Kurdi, N. Codreanu, S. Gröblacher, R. Hanson, R. Norte and T. van der Sar
Nanoscale spin waves are promising as on-chip signal carriers. We use a single spin in diamond to reveal the surprising multitude of spin waves excited by a microwave stripline.
B. G. Simon*, S. Kurdi*, J. J. Carmiggelt, M. Borst, A. Katan, and T. van der Sar
Spins in diamond are high-sensitivity microwave sensors, but their sensitivity is limited to their resonance frequency. We expand the detection range using spin-wave mixing in a diamond-magnet sensor chip.
J. J. Carmiggelt, I. Bertelli, R. Mulder, A. Teepe, M. Elyasi, B. G. Simon, G. E. W. Bauer, Y. M. Blanter, and T. van der Sar
This roadmap features our spin-wave imaging techniques in the context of pushing spin-wave technology towards applications. Many thanks to prof. Andrii Chumak (Vienna Univ.) for coordinating.
A.V. Chumak, P. Kabos, M. Wu, …., J.J. Carmiggelt, Y. Blanter, T. van der Sar, … et al.
IEEE Transactions on Magnetics 58, 6 (2022)
Phase transitions of 2D magnets detected via mechanical resonance - a collaboration with profs. Steeneken, van der Zant and Han
M Siskins, S Kurdi, M Lee, BJM Slotboom, W Xing, S Mañas-Valero, E Coronado, S Jia, W Han, T van der Sar, H van der Zant, P. G. Steeneken
npj 2D Materials and Applications 6:41 (2022)
C. Gonzalez-Ballestero, T. van der Sar, and O. Romero-Isart
Physical Review B 105, 075410 (2022)
See also arXiv:2012.00540
We demonstrate the rapid foldover of spin-wave modes in Ga:YIG and extract its magnetic anisotropy
J.J. Carmiggelt, O.C. Dreijer, C. Dubs, O. Surzhenko, and T. van der Sar
Applied Physics Letters 119, 202403 (2021);
See also arXiv:2109.05045
We reveal the surprisingly high-density magnon gas that a spin wave in YIG leaves in its wake
B. G. Simon*, S. Kurdi*, H. La, I. Bertelli, J.J. Carmiggelt, M. Ruf, N. de Jong, H. van den Berg, A. Katan, and T. van der Sar
Our NV centers detect spin waves by their magnetic fields, enabling us to look through metals at spin waves underneath. We reveal eddy-current spin-wave damping and show how to extract properties of hybrid metal - spin-wave systems.
I. Bertelli, B. G. Simon, T. Yu, J. Aarts, G. E. W. Bauer, Y. M. Blanter and T. van der Sar
Advanced Quantum Technologies 2021, 2100094
A popular-science article about quantum networks, computing, and sensing with spins in diamond.
Toeno van der Sar, Tim Taminiau, Ronald Hanson
We study the formation of magnetic domains during a phase transition using statistical quantities defined on real-space magnetic images.
G. Nava Antonio*, I. Bertelli*, B. G. Simon, R. Medapalli, D. Afanasiev, and T. van der Sar
Journal of Applied Physics 129, 223904 (2021)
See also Arxiv:2104.02814
A popular-science article on magnetic imaging of spin waves with spins in diamond in the Dutch Journal of Physics
J. J. Carmiggelt, B. G. Simon, I. Bertelli, T. van der Sar
Nederlands Tijdschrift voor Natuurkunde, Juni 2021
We show how to extract a magnet’s saturation magnetization from the magnetic fields generated by thermal spin waves
A. Rustagi, I. Bertelli, T. van der Sar, and P. Upadhyaya
Phys. Rev. B rapid comm. 102 , 220403 (2020)
See also Arxiv:2009.05060
2D semiconductors play a central role in valleytronics, which aims to encode information in valley-polarized excitons. We show that valley polarization can be enhanced by quenching the exciton lifetime via chemical doping.
J. J. Carmiggelt*, M. Borst*, and T. van der Sar
Scientific Reports 10 , 17389 (2020
Spin waves are collective exctiations in magnetic materials that are promising signal carriers. We introduce a new technique for imaging spin waves, based on NV spins in diamond. In contrast with other techniques, it detects spin waves via their microwave magnetic fields, enabling high-resolution imaging through optically opaque materials.
I. Bertelli, J. J. Carmiggelt, T. Yu, B. G. Simon, C. C. Pothoven, G. E. W. Bauer, Y. M. Blanter, J. Aarts, and T. van der Sar
Science Advances 6, eabd3556 (2020)
We highlight how electronic sensor spins in diamond couple to spins and currents in materials for condensed-matter research
F. Casola*, T. van der Sar*, and A. Yacoby
Nature Reviews Materials 3, 17088 (2018)
W H Peeters, JE R Jacobs, R Bezemer, T van der Sar, J Muehlsteff
Green light photoplethysmography in transmission geometry
WO2017001955A1 (2016)
E R Jacobs, W H Peeters, J W Weekamp, J van Roosmalen, R Bezemer, I W F Paulussen, T van der Sar
Fixation method for a nasal septum sensor for measuring medical parameters
WO2016067153A1 (2015)
W H Peeters, T van der Sar, E R Jacobs, G M Verbeek, J W Weekamp
Flexible optical source for pulse oximetry
EP3206572B1 (2015)
A robust, fiber-coupled scanning probe magnetometer using electron spins at the tip of a diamond nanobeam
Y. Li, G. Welker, R. Norte, T. van der Sar
New J. Phys. 26 103031 (2024)
The 2024 magnonics roadmap
A. Finco, C.R. Du, T. van der Sar, …, D Grundler, B. Flebus.
J. Phys. Condens. Matter 36, 363501 (2024)
2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science
…., C.R. Du, A. Yacoby, T. van der Sar, …, D. Makarov, and M. Poggio.
J. Phys. Mater. 7, 032501 (2024).
Observation and control of hybrid spin-wave-Meissner-current transport modes
M. Borst, P. H. Vree, A. Lowther, A. Teepe, S. Kurdi, I. Bertelli, B. G. Simon, Y. M. Blanter, T. van der Sar
Science 382, 430 (2023)
Nitrogen-vacancy magnetometry of CrSBr by diamond membrane transfer
T. S. Ghiasi, M. Borst, S. Kurdi, B. G. Simon, I. Bertelli, C, Boix-Constant, S. Mañas-Valero, H. S. J. van der Zant, T. van der Sar
npj 2D Materials and Applications 7, 62 (2023)
A Fiber-coupled Scanning Magnetometer with Nitrogen-Vacancy Spins in a Diamond Nanobeam
Y. Li, F.A. Gerrtisma, S. Kurdi, N. Codreanu, S. Gröblacher, R. Hanson, R. Norte and T. van der Sar
ACS photonics 2023
Filtering and imaging of frequency-degenerate spin waves using nanopositioning of a single-spin sensor
B. G. Simon*, S. Kurdi*, J. J. Carmiggelt, M. Borst, A. Katan, and T. van der Sar
Nano Letters 2022
Broadband microwave detection using electron spins in a hybrid diamond-magnet sensor chip
J. J. Carmiggelt, I. Bertelli, R. Mulder, A. Teepe, M. Elyasi, B. G. Simon, G. E. W. Bauer, Y. M. Blanter, and T. van der Sar
Nature Communications 2023
Roadmap on spin-wave computing
A.V. Chumak, P. Kabos, M. Wu, …., J.J. Carmiggelt, Y. Blanter, T. van der Sar, … et al.
IEEE Transactions on Magnetics 58, 6 (2022)
Nanomechanical probing and strain tuning of the Curie temperature in suspended Cr2Ge2Te6 heterostructures
M Siskins, S Kurdi, M Lee, BJM Slotboom, W Xing, S Mañas-Valero, E Coronado, S Jia, W Han, T van der Sar, H van der Zant, P. G. Steeneken
npj 2D Materials and Applications 6:41 (2022)
Towards a quantum interface between spin waves and paramagnetic spin baths
C. Gonzalez-Ballestero, T. van der Sar, and O. Romero-Isart
Physical Review B 105, 075410 (2022)
Electrical spectroscopy of the spin-wave dispersion and bistability in gallium-doped yttrium iron garnet
J.J. Carmiggelt, O.C. Dreijer, C. Dubs, O. Surzhenko, and T. van der Sar
Applied Physics Letters 119, 202403 (2021);
Directional excitation of a high-density magnon gas using coherently driven spin waves
B. G. Simon*, S. Kurdi*, H. La, I. Bertelli, J.J. Carmiggelt, M. Ruf, N. de Jong, H. van den Berg, A. Katan, and T. van der Sar
Nano Letters, Oct. 1, 2021
Imaging spin-wave damping underneath metals using electron spins in diamond
I. Bertelli, B. G. Simon, T. Yu, J. Aarts, G. E. W. Bauer, Y. M. Blanter and T. van der Sar
Advanced Quantum Technologies 2021, 2100094
Diamond-based quantum technologies
Toeno van der Sar, Tim Taminiau, Ronald Hanson
Photoniques 107, 44 (2021)
Magnetic imaging and statistical analysis of the metamagnetic phase transition of FeRh with electron spins in diamond
G. Nava Antonio*, I. Bertelli*, B. G. Simon, R. Medapalli, D. Afanasiev, and T. van der Sar
Journal of Applied Physics 129, 223904 (2021)
Diamant onthult golvende spinzee (Dutch, meaning “Diamond reveals waves in the spin sea”)
J. J. Carmiggelt, B. G. Simon, I. Bertelli, T. van der Sar
Nederlands Tijdschrift voor Natuurkunde, Juni 2021
Sensing chiral magnetic noise via quantum impurity relaxometry
A. Rustagi, I. Bertelli, T. van der Sar, and P. Upadhyaya
Phys. Rev. B rapid comm. 102 , 220403 (2020)
Exciton-to-trion conversion as a control mechanism for valley polarization in room-temperature monolayer WS2
J. J. Carmiggelt*, M. Borst*, and T. van der Sar
Scientific Reports 10 , 17389 (2020
Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator
I. Bertelli, J. J. Carmiggelt, T. Yu, B. G. Simon, C. C. Pothoven, G. E. W. Bauer, Y. M. Blanter, J. Aarts, and T. van der Sar
Science Advances 6, eabd3556 (2020)
Nanoscale detection of magnon excitations with variable wavevectors through a quantum spin sensor
E. Lee-Wong, R. Xue, F. Ye, A. Kreisel, T. van der Sar, A. Yacoby and C. Du
Nano Lett. 2020, 20, 5, 3284
Spin-torque oscillation in a magnetic insulator probed by a single-spin sensor
H. Zhang*, M. Ku*, F. Casola, C. Du, T. van der Sar, M. Onbasli, C. Ross, Y. Tserkovnyak, A. Yacoby, and R. Walsworth
Physical Review B 102, 024404 (2020)
Electrical generation and detection of spin waves in a quantum Hall ferromagnet
D. S. Wei, T. van der Sar, S.H. Lee, K. Watanabe, T. Taniguchi, B. I. Halperin, and A. Yacoby
Science 362, 229 (2018);
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
F. Casola*, T. van der Sar*, and A. Yacoby
Nature Reviews Materials 3, 17088 (2018)
Control and Local Measurement of the Spin Chemical Potential in a Magnetic Insulator
C. Du, T. van der Sar, T. X. Zhou*, P. Upadhyaya, F. Casola, H. Zhang, M. C. Onbasli, C. A. Ross, R. Walsworth, Y. Tserkovnyak, A. Yacoby
Science 357, 195 (2017)
Ienie-mienie magnetisme (Dutch, meaning “Teeny-tiny magnetism”)
J. Keulen
De Ingenieur, September 2017
Nanometre-scale probing of spin waves using single electron spins
T. van der Sar, F. Casola, R. Walsworth and A. Yacoby
Nature Communications 6, 7886 (2015)
Universal control and error correction in multi-qubit spin registers in diamond
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson
Nature Nanotechnology 9, 171 (2014)
Detection and control of individual nuclear spins using a weakly coupled electron spin
T. H. Taminiau, J. J. T. Wagenaar, T. van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson
Physics Review Letters 109, 137602 (2012)
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
G. de Lange, T. van der Sar, M. S. Blok, Z. H. Wang, V. V. Dobrovitski, and R. Hanson
Scientific Reports 2, 382 (2012)
Decoherence-protected quantum gates for a hybrid solid-state spin register
T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D.M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski
Nature 484, 82 (2012)
Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment
T. van der Sar, J. Hagemeier, W. Pfaff, E.C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson
Journal of the Optical society of America B 29, 698 (2012)
Een geflipt elektron leeft langer (Dutch, meaning “A flipped electron lives longer”)
G. de Lange, T. van der Sar, and R. Hanson
Nederlands Tijdschrift voor Natuurkunde, January 2012
Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system
T. van der Sar, J. Hagemeier, W. Pfaff, E.C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson
Applied Physics Letters 98, 193103 (2011)
Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond
L. Robledo, H. Bernien, T. van der Sar, and R. Hanson
New Journal of Physics 13, 025013 (2011)
Quantumcircuitjes bouwen in een elektronenmicroscoop (Dutch, meaning “Building quantum circuits in an electron microscope”)
T. van der Sar, E. C. Heeres, T. H. Oosterkamp, and R. Hanson
Nederlands Tijdschrift voor Natuurkunde, November 2009
Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center
T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson
Applied Physics Letters 94, 173104 (2009)